Preprojective algebras: classical and higher

Joseph Grant
University of East Anglia, UK

Representation Theory of Algebras and Applications 11 June 2021

Let k be an algebraically closed field.
Let Λ be a finite dimensional k-algebra.
Q. What is the job of a representation theorist?
A. To understand all the Λ-modules.

First: find all the (finite dimensional) Λ-modules.

- What are the simple modules?
- Can we build bigger modules?

Next: how do they interact?

Easiest case: Λ is semisimple
(e.g., $\Lambda=\mathbb{C} G, G$ finite group)

Then every module is a direct sum of simple modules e.g., for the regular module we have

$$
\Lambda \cong S_{1} \oplus d_{1} \oplus \cdots \oplus S_{n} \oplus d_{n}
$$

And by Schur's lemma,

$$
\operatorname{Hom}_{\Lambda} \cong \begin{cases}k, & S \cong T \\ 0, & S \nsubseteq T\end{cases}
$$

What's the next easiest case?
For general Λ, the regular module is

$$
\Lambda \cong P_{1}{ }^{\oplus d_{1}} \oplus \cdots \oplus P_{n} \oplus d_{n}
$$

a sum of projective modules.

We can replace a module by a projective resolution:

$$
\begin{array}{cc}
\cdots \xrightarrow{d} P^{(2)} \xrightarrow{d} P^{(1)} \xrightarrow{d} P^{(0)} \\
& \\
d^{2}=0
\end{array}
$$

Each module M has a projective dimension pdim M : this is the length of its shortest projective resolution.
The global dimension of an algebra is:

$$
\operatorname{gldim} \Lambda=\sup \{\operatorname{pdim} M\} \in \mathbb{N} \cup \infty
$$

- gldim $\Lambda=0 \Leftrightarrow \Lambda$ is semisimple.
- $\operatorname{gldim} \Lambda \leq 1 \Leftrightarrow \Lambda$ is hereditary.

Up to Morita equivalence we can assume Λ is basic, i.e., all simple modules are 1-dimensonal. Then

- Λ is hereditary $\Leftrightarrow \Lambda \cong k Q$ for some quiver Q.

A quiver is a (finite) directed graph. The path algebra $k Q$ has basis all paths. Length zero path at vertex i denoted e_{i}. Example: $Q=1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3$ (type A_{3})

leftrright	e_{1}	e_{2}	e_{3}	α	β	$\alpha \beta$
e_{1}	e_{1}			α		$\alpha \beta$
e_{2}		e_{2}			β	
e_{3}			e_{3}			
α		α			$\alpha \beta$	
β			β			
$\alpha \beta$			$\alpha \beta$			

A representation of a quiver assigns vector spaces to vertices, and linear maps to arrows.

There is an equivalence of categories

$$
\bmod -k Q \simeq \operatorname{Rep}(Q)
$$

sending $M \in \bmod -k Q$ to the rep V with $V_{i}=e_{i} M$.

Example: $Q=1 \xrightarrow{\alpha} 2\left(\right.$ type $\left.\mathrm{A}_{2}\right)$

$$
0 \rightarrow k
$$

$$
\begin{aligned}
& V: \quad V_{1} \xrightarrow{V_{\alpha}} V_{2} \\
& W: W_{1} \xrightarrow{W_{\alpha}^{\alpha}} W_{2} \\
& V \oplus W: V_{1} \oplus W_{1} \xrightarrow{\binom{v_{w}}{w_{2}}} V_{2} \oplus W_{2} \\
& (\operatorname{coim} \underset{\oplus}{\sim} \mathrm{im}) \\
& (\operatorname{ker} \underset{\oplus}{0} 0) \\
& (0 \xrightarrow{0} \text { coker) } \\
& \text { Indec. rep.s: }
\end{aligned}
$$

Example: $Q=1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3$ (type A_{3})
$k \rightarrow 0 \rightarrow 0 \quad 1$
$0 \rightarrow k \rightarrow 0 \quad 2$
$0 \rightarrow 0 \rightarrow k \quad 3$
$k=h \rightarrow 0 \quad 1 \begin{aligned} & 1 \\ & 2\end{aligned}$
$0 \rightarrow k \rightarrow k \quad \begin{aligned} & 2 \\ & 3\end{aligned}$

$$
\left.k \leadsto k \leadsto k \leadsto \begin{array}{l}
1 \\
2 \\
3
\end{array}\right]
$$

Example: category of indecomposables in type A_{3}

Here, maps are "indec":
$3 \rightarrow \frac{1}{3}$ factors as $3 \rightarrow \frac{2}{3} \rightarrow \begin{aligned} & 1 \\ & 2 \\ & 3\end{aligned}$.

For any f.d. algebra Λ, there is a function

$$
\tau: \operatorname{Ind}(\Lambda) \rightarrow \operatorname{Ind}(\Lambda) \cup\{0\}
$$

called the Auslander-Reiten translate, with $\tau M=0$ iff M is projective. It has a (partial) inverse

$$
\tau^{-}: \operatorname{Ind}(\Lambda) \rightarrow \operatorname{Ind}(\Lambda) \cup\{0\}
$$

We say M is "preprojective" if $\tau^{r} M$ is projective, for some $r \geq 0$.

Theorem [PA, Ga]: For $\Lambda=k Q$, every module is preprojective $\Leftrightarrow k Q$ is of finite representation type.

Question [Gelfand-Ponomarev]: is there an algebra Π

- which has $\Lambda=k Q$ as a subalgebra, and
- where the regular П-module restricts to the direct sum of all preprojective Λ-modules?

Construction [based on GP, 1979]: let \bar{Q} be the doubled quiver of Q, so for each arrow $\alpha: i \rightarrow j$ in Q we add another arrow $\alpha^{*}: j \rightarrow i$.
Then define

$$
\Pi=k \bar{Q} /\left(\sum_{\alpha \in Q} \alpha \alpha^{*}-\alpha^{*} \alpha\right)
$$

Example: $Q=1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3 \quad \bar{Q}=1 \stackrel{\alpha}{\underset{\alpha^{*}}{\leftrightarrows}} 2 \underset{\beta^{*}}{\stackrel{\beta}{\underset{~}{*}} 3} 3$

Idea [Baer-Geigle-Lenzing]: construct П directly (instead of writing explicit presentation).

Key fact: for $\Lambda=k Q$, inverse AR translate is a functor

$$
\tau^{-}: \bmod -k Q \rightarrow \bmod -k Q \underset{\operatorname{Hom}_{\Omega}(\Lambda, M)}{ }(\Lambda
$$

Definition [BGL, 1987]: Let $\Lambda=k Q$ and let

$$
\Pi=\bigoplus_{r \geq 0} \operatorname{Hom}_{\Lambda}\left(\Lambda, \tau^{-r} \Lambda\right) \cong \bigoplus_{r \geqslant 0} \tau^{-\nabla} \Lambda
$$

with composition $g * f=\tau^{-r}(g) f$.

$$
\Lambda \xrightarrow{f} \tau^{-r} \Lambda=\tau^{-r} \Lambda \xrightarrow{\tau^{-r}(g)} \tau^{-r-s} \Lambda
$$

Later, Ringel and Crawley-Boevey showed that these defintions give isomorphic algebras.
So call them "the" preprojective algebra of $\Lambda=k Q$.
$\Pi=k \bar{Q} / I$ has a grading by path length.
$\Pi=\bigoplus_{r \geq 0} \operatorname{Hom}_{\Lambda}\left(\Lambda, \tau^{-r} \Lambda\right)$ has a grading by r.

These gradings do not correspond.
To get the second grading on $k \bar{Q} / I$, set

$$
\operatorname{deg}(\alpha)=0, \quad \operatorname{deg}\left(\alpha^{*}\right)=1
$$

Auslander-Reiten theory works for all algebras, but it's most powerful when gldim $\Lambda \leq 1$.
lyama developed a generalisation which can be more useful for algebras with higher global dimension.

Definition [lyama]: $\tau_{d}=\Omega^{d-1} \tau$ and $\tau_{d}^{-}=\tau^{-} \Omega^{1-d}$, where ΩM is the syzygy of M.

We say M is " d-preprojective" if $\tau_{d}^{r} M$ is projective, for some $r \geq 0$.

Example: $Q=1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3$ and $\Lambda=k Q /(\alpha \beta)$.

$$
\begin{aligned}
& g \operatorname{ldim} \Lambda=2 . \quad d=2 . \\
& \Lambda=\frac{1}{2} \oplus \frac{2}{3} \oplus 3
\end{aligned}
$$

2-AR quiver:
S_{2} is not 2-prepsojective.

$$
P_{1}=\frac{1}{2}
$$

Fact: if $\operatorname{gldim} \Lambda \leq d$ then τ_{d}^{-}is a functor on the category of d-preprojective Λ-modules.

Definition [IO,...$]$: The ($d+1$)-preprojective algebra of Λ is:

$$
\Pi=\bigoplus_{r \geq 0} \operatorname{Hom}_{\Lambda}\left(\Lambda, \tau_{d}^{-r} \Lambda\right)
$$

Question: can we give an explicit presentation?

$$
\Pi=?=k \bar{Q} /(\bar{R})
$$

$$
\text { gldim } 1=d .
$$

Suppose $\Lambda=k Q / R$. We want $\Pi=k \overline{\bar{Q}} /((\hat{R})$.
Strategy to find \bar{Q} :

- Compute projective resolution of each simple Λ module S_{i}.

- For each summand of $d^{\text {th }}$ term isomorphic to P_{j}, add an arrow $j \rightarrow i$ to the quiver Q.

Proposition [G-Iyama, Thibault] The quiver of Π is \bar{Q}.

Example: $Q=1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3$ and $\Lambda=k Q /(\alpha \beta)$.

$$
\Lambda=\frac{1}{2} \oplus \underbrace{2}_{P_{1}} \oplus \underbrace{3}_{P_{2}}
$$

So $\vec{Q}=1 \operatorname{ls}^{2}>3$

Definition: a "superpotential" for a quiver is a sum of cycles up to (super)cyclic equivalence

So for a cycle

$$
1 \xrightarrow{\alpha_{1}} 2 \xrightarrow{\alpha_{2}} \ldots \xrightarrow{\alpha_{n-1}} n \xrightarrow{\alpha_{n}} 1
$$

we have

$$
\alpha_{1} \overbrace{2} \ldots \alpha_{n}=(-1)^{n+1} \alpha_{2} \ldots \alpha_{n} \alpha_{1}
$$

For paths p, q we can take the cyclic derivative

$$
\frac{\partial_{p}(p q)=q}{\partial_{p}\left(p^{\prime} q\right)=0} \text { if } p \neq p^{\prime} \text {. }
$$

Examples:

$$
\begin{aligned}
& \text { mples: } \\
& 1 \xrightarrow{\alpha} 2 W=\alpha \beta \gamma \delta=-\beta \gamma \delta \alpha \\
& \delta \uparrow=\gamma \delta \alpha \beta \\
& \delta \leftarrow_{3}=-\delta \alpha \beta \gamma \\
& 4 \beta
\end{aligned}
$$

$$
1 \xrightarrow{x} 2
$$

$$
W=\alpha \beta \gamma=\beta \gamma \alpha
$$

$$
=\gamma \alpha \beta
$$

$$
\partial_{\alpha} W=\beta \gamma, \quad \partial_{\beta} W=\gamma \alpha, \quad \partial_{\gamma}=\alpha \beta
$$

Suppose $\Lambda=k Q / R$ with R homogeneous ($\operatorname{deg} \geq 2$). Then Λ is graded by path length.
We say Λ is "Koszul" if, in each projective resolution of a simple module, all the maps have degree 1.
Let $V_{n}=k Q_{n}=$ vector space of paths of length n.
Let $K_{d}=V_{d-2} R \cap V_{d-3} R V_{1} \cap \cdots \cap R V_{d-2}$.
Choose a basis \mathcal{B} of K_{d}. Then each $b \in \mathcal{B}$ corresponds to an arrow added to Q to get \bar{Q}.
Define a superpotential:

$$
W=\sum_{b \in \mathcal{B}} b b^{*}
$$

Theorem [G-Iyama, Thibault for d-RI]
If $\Lambda=k Q / R$ is Koszul, of global dimension d, then

$$
\Pi=k \bar{Q} /\left(R+\partial_{p} W / p \in V_{d-1}\right)
$$

If moreover $\operatorname{Ext}_{\Lambda}^{i}\left(\Lambda^{*}, \Lambda\right)=0$ for $1<i<d$, then:

$$
\Pi=k \bar{Q} /\left(\partial_{p} W \mid p \in V_{d-1}\right)
$$

The condition holds for all d-hereditary algebras. This includes algebras with a d-cluster tilting module.

Question: is the Koszul assumption necessary?

Example: $Q=1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3 \xrightarrow{\gamma} 4$ and $\Lambda=k Q /(\underline{\alpha \beta}, \beta \gamma)$.

$$
\begin{aligned}
& \underbrace{\alpha \beta \gamma} \delta=(\alpha \beta \gamma)^{*} \\
& W=\alpha \beta \gamma \delta \\
& \begin{array}{r}
\bar{Q}=1_{\delta}^{\alpha} \overbrace{x^{2}}^{\beta \gamma} \underbrace{\alpha \gamma}_{3}
\end{array} \\
& \text { geldim } L=3=d . \quad d-1=2 \text {. } \\
& \left(\begin{array}{ll}
\partial_{\alpha \beta} \omega=\gamma \delta & \partial_{\gamma \delta}=\alpha \beta \\
\partial_{\beta \gamma} \omega=-\delta \alpha & \partial_{\delta \alpha}=-\beta \gamma,
\end{array}\right)<\pi=\sqrt{\kappa \bar{Q}},
\end{aligned}
$$

When Λ is d-hereditary, we compute projective resolutions of all simple Π-modules.

Two cases:

- d-RF: simple П-modules have $\mathrm{p} \cdot \mathrm{dim}=d+1$
- d-RI: simple П-modules are periodic of "twisted period" $d+1$

Reference:
"Higher preprojective algebras, Koszul algebras, and superpotentials", J. G. and O. Iyama,
Compositio Mathematica (2020), 156(12), 2588-2627

Thank you for listening!

$$
\begin{aligned}
& \Lambda \in \underset{\text { dual }}{\text { Kos3ul }} \Lambda^{!} \\
& \xi\} \\
& \pi(\Lambda) \stackrel{\text { in some }}{\stackrel{\text { examples, }}{\leftrightarrows}} S \operatorname{Triv}\left(\Lambda^{!}\right)=\Lambda^{!} \oplus\left(\Lambda^{!}\right)^{*}
\end{aligned}
$$

nigher quadratic dual, higher preprojective quadraticona, zigzag

