Preprojective algebras: classical and higher

> Joseph Grant University of East Anglia, UK

Representation Theory of Algebras and Applications 11 June 2021

Let k be an algebraically closed field. Let Λ be a finite dimensional k-algebra.

Q. What is the job of a representation theorist? A. To understand all the Λ -modules.

First: find all the (finite dimensional) Λ -modules.

- What are the simple modules?
- Can we build bigger modules?

Next: how do they interact?

Easiest case: Λ is semisimple (e.g., $\Lambda = \mathbb{C}G$, G finite group)

Then every module is a direct sum of simple modules e.g., for the regular module we have

$$\Lambda \cong S_1^{\oplus d_1} \oplus \cdots \oplus S_n^{\oplus d_n}$$

And by Schur's lemma,

$$\operatorname{Hom}_{\Lambda} \cong \begin{cases} k, & S \cong T \\ 0, & S \ncong T \end{cases}$$

What's the next easiest case? For general Λ , the regular module is

$$\Lambda \cong P_1^{\oplus d_1} \oplus \cdots \oplus P_n^{\oplus d_n},$$

a sum of projective modules.

We can replace a module by a projective resolution:

$$\frac{d}{d^2} = 0 \qquad P^{(2)} \frac{d}{d^2} = 0 \qquad P^{(1)} \frac{d}{d^2} = 0 \qquad M$$

Each module M has a projective dimension pdim M: this is the length of its shortest projective resolution. The global dimension of an algebra is:

gldim $\Lambda = \sup \{ pdim M \} \in \mathbb{N} \cup \infty$

- gldim $\Lambda = 0 \Leftrightarrow \Lambda$ is semisimple.
- gldim $\Lambda \leq 1 \Leftrightarrow \Lambda$ is hereditary.

Up to Morita equivalence we can assume Λ is basic, i.e., all simple modules are 1-dimensonal. Then

• Λ is hereditary $\Leftrightarrow \Lambda \cong kQ$ for some quiver Q.

A quiver is a (finite) directed graph.

The path algebra kQ has basis all paths. Length zero path at vertex i denoted e_i .

Example:
$$Q = 1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3$$
 (type A₃)

left\right	e_1	<i>e</i> ₂	<i>e</i> ₃	α	β	αβ
<i>e</i> ₁	e_1			α		αβ
<i>e</i> ₂		<i>e</i> ₂			β	
<i>e</i> ₃			<i>e</i> ₃			
α		α			αβ	
β			β			
αβ			αβ			

A representation of a quiver assigns vector spaces to vertices, and linear maps to arrows.

There is an equivalence of categories $mod-kQ \simeq Rep(Q)$

sending $M \in \text{mod}-kQ$ to the rep V with $V_i = e_i M$.

 $k \rightarrow k$

Example: $Q = 1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3$ (type A₃) 1 k-10-00 0-1k-0 [2] 0->0-k (3) k ~~ h ~~ 0 [] $\partial \rightarrow k \rightarrow k$ 23 んごんふん 22

Example: category of indecomposables in type A₃

For any f.d. algebra Λ , there is a function

 $\tau: \operatorname{Ind}(\Lambda) \to \operatorname{Ind}(\Lambda) \cup \{0\}$

called the Auslander-Reiten translate, with $\tau M = 0$ iff M is projective. It has a (partial) inverse

 $\tau^-: \operatorname{Ind}(\Lambda) \to \operatorname{Ind}(\Lambda) \cup \{0\}$

We say M is "preprojective" if $\tau^r M$ is projective, for some $r \ge 0$.

Theorem [PA, Ga]: For $\Lambda = kQ$, every module is preprojective $\Leftrightarrow kQ$ is of finite representation type.

Question [Gelfand-Ponomarev]: is there an algebra Π

- which has $\Lambda = kQ$ as a subalgebra, and
- where the regular Π -module restricts to the direct sum of all preprojective Λ -modules?

Construction [based on GP, 1979]: let \overline{Q} be the doubled quiver of Q, so for each arrow $\alpha: i \rightarrow j$ in Q we add another arrow $\alpha^*: j \rightarrow i$.

Then define

$$\Pi = k\bar{Q} / \left(\sum_{\alpha \in Q} \alpha \alpha^* - \alpha^* \alpha\right)$$

Idea [Baer-Geigle-Lenzing]: construct Π directly (instead of writing explicit presentation).

Key fact: for $\Lambda = kQ$, inverse AR translate is a functor $\tau^-: \operatorname{mod} - kQ \to \operatorname{mod} - kQ$ $\operatorname{for}_{\Lambda}(\Lambda, M) \xrightarrow{\sim} M$

Definition [BGL, 1987]: Let $\Lambda = kQ$ and let

 $\Pi = \bigoplus_{r \ge 0} \operatorname{Hom}_{\Lambda}(\Lambda, \tau^{-r}\Lambda) \cong \bigoplus_{r \ge 0} \tau^{-r}\Lambda$ with composition $g * f = \tau^{-r}(g)f$.

$$\Lambda \xrightarrow{f} = \xrightarrow{r} \Lambda = \xrightarrow{\tau} \chi^{\tau} = \Lambda$$

Later, Ringel and Crawley-Boevey showed that these definitons give isomorphic algebras.

So call them "the" preprojective algebra of $\Lambda = kQ$.

 $\Pi = k\overline{Q}/I \text{ has a grading by path length.}$ $\Pi = \bigoplus_{r \ge 0} \operatorname{Hom}_{\Lambda}(\Lambda, \tau^{-r}\Lambda) \text{ has a grading by r.}$

These gradings do not correspond. To get the second grading on $k\overline{Q}/I$, set

$$\deg(\alpha) = 0$$
, $\deg(\alpha^*) = 1$.

Auslander-Reiten theory works for all algebras, but it's most powerful when gldim $\Lambda \leq 1$.

Iyama developed a generalisation which can be more useful for algebras with higher global dimension.

Definition [lyama]: $\tau_d = \Omega^{d-1}\tau$ and $\tau_d^- = \tau^- \Omega^{1-d}$, where ΩM is the syzygy of M.

We say M is "d-preprojective" if $\tau_d^r M$ is projective, for some $r \ge 0$.

Example: $Q = 1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3$ and $\Lambda = kQ/(\alpha\beta)$. gldim $\Lambda = 2$, d=2. $\int_{a} = \frac{1}{2} \oplus \frac{2}{3} \oplus \frac{3}{3} \oplus \frac{3}{3}$ $P_1 = \frac{9}{2}$ 2-AR quiver: P2 = Sa is not 2-preprojective. $= \overline{c_3} P_2$.ζ

Fact: if gldim $\Lambda \leq d$ then τ_d^- is a functor on the category of d-preprojective Λ -modules.

Definition [IO, ...]: The (d+1)-preprojective algebra of Λ is:

$$\Pi = \bigoplus_{r \ge 0} \operatorname{Hom}_{\Lambda}(\Lambda, \tau_d^{-r}\Lambda)$$

Question: can we give an explicit presentation?

$$\Pi = ? = k\bar{Q}/(\bar{R})$$

Suppose $\Lambda = kQ/R$. We want $\Pi = kQ/(\overline{R})$. Strategy to find \overline{Q} :

• Compute projective resolution of each simple Λ module S_i .

• For each summand of d^{th} term isomorphic to P_j , add an arrow $j \rightarrow i$ to the quiver Q.

Proposition [G-Iyama, Thibault] The quiver of Π is \overline{Q} .

Example: $Q = 1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3$ and $\Lambda = kQ/(\alpha\beta)$. $\mathcal{A} = \frac{1}{2} \oplus \frac{2}{3} \oplus \frac{3}{3}$ P, Pz P. $0 \rightarrow 3 \rightarrow \frac{2}{5}$ -> 0 3

Definition: a "superpotential" for a quiver is a sum of cycles up to (super)cyclic equivalence

For paths p, q we can take the cyclic derivative

$$\frac{\partial_p(pq) = q}{\partial_p(p'q) = 0} \quad \text{if } p \neq p'.$$

Examples: $I \xrightarrow{\alpha} Z \qquad \forall = \alpha \beta \delta S = -\beta \delta \delta \alpha$ $= \delta \delta \alpha \beta$ $\delta T \qquad J\beta \qquad = -\delta \alpha \beta \delta$ $4 \leftarrow \delta 3$

(x)2 $W = \alpha \beta \gamma = \beta \gamma \alpha$ 8 2 P 3 = JXB $\partial_{\alpha}W = \beta V$, $\partial_{\beta}W = V \alpha$, $\partial_{\gamma} = \alpha \beta$

Suppose $\Lambda = kQ/R$ with R homogeneous (deg ≥ 2). Then Λ is graded by path length.

We say Λ is "Koszul" if, in each projective resolution of a simple module, all the maps have degree 1.

Let $V_n = kQ_n$ = vector space of paths of length n. Let $K_d = V_{d-2}R \cap V_{d-3} RV_1 \cap \cdots \cap RV_{d-2}$. Choose a basis \mathcal{B} of K_d . Then each $b \in \mathcal{B}$

corresponds to an arrow added to Q to get \overline{Q} .

Define a superpotential:

$$W = \sum_{b \in \mathcal{B}} bb^*$$

Theorem [G-Iyama, Thibault for *d*-RI] If $\Lambda = kQ/R$ is Koszul, of global dimension *d*, then $\Pi = k\overline{Q}/(R + \partial_p W) \mid p \in V_{d-1})$ If moreover $\operatorname{Ext}_{\Lambda}^i(\Lambda^*, \Lambda) = 0$ for 1 < i < d, then: $\Pi = k\overline{Q}/(\partial_p W \mid p \in V_{d-1})$

The condition holds for all d-hereditary algebras. This includes algebras with a d-cluster tilting module.

Question: is the Koszul assumption necessary?

Example: $Q = 1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3 \xrightarrow{\gamma} 4$ and $\Lambda = kQ/(\alpha\beta, \beta\gamma)$. $\alpha \beta \delta = (\alpha \beta \delta)^{*}$ $\overline{Q} = 1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3$ S X 8 M = xBDZgldim L = 3 = d. d-1=2, $\begin{array}{l} \partial_{\alpha\beta}W = \delta \\ \partial_{\beta\gamma}G = \langle \beta \rangle \\ \partial_{\beta\gamma}G$

When Λ is *d*-hereditary, we compute projective resolutions of all simple Π -modules.

Two cases:

- *d*-RF: simple Π -modules have p.dim = d + 1
- *d*-RI: simple Π -modules are periodic of "twisted period" d + 1

Reference:

"Higher preprojective algebras, Koszul algebras, and superpotentials", J. G. and O. Iyama,

Compositio Mathematica (2020), 156(12), 2588-2627

Thank you for listening!

Koszul T(Λ) in some $T(\Lambda)$ (Λ') = $\Lambda' \oplus (\Lambda')^*$ higher preprojective quadratic dual higher $\chi' = \chi' \oplus (\Lambda')^*$