Higher zigzag algebras

Joseph Grant
University of East Anglia, Norwich, UK
http://josephgrant.eu

ICRA 2018
Prague, Czech Republic
Thursday 16th August

Motivation

- Aim: construct interesting periodic algebras
- Why? they are connected to symmetries of derived categories
- Hope: to get interesting relations between spherical twists
(Now) classical theory: braid group actions on triangulated categories
- Simplest example: various incarnations
- $\left(A_{s}\right)$-configurations
- Brauer tree algebras of lines
- type A zigzag algebras
- Ext-algebras of equivariant skyscraper sheaves
- Why are they periodic?
- almost Koszul dual to type A preprojective algebras
- type A preprojective algebras are periodic
- (one) reason: nice AR theory of finite type hereditary algebras
- Bite: higher AR theory and higher preprojective algebras [lyama, ...]

Zigzag algebras

- Fix a nice field $k=\mathbb{F}=\mathbb{C}$. Given a simple graph (no multiple edges) we construct its zigzag algebra.
- Example: given A_{4} graph $1-2-3-4$ we get $Z_{4}=k Q / I$ where

$$
Q=1 \underset{\beta}{\stackrel{\alpha}{\sim}} 2 \underset{\beta}{\sim} 4, \quad I=\left(\alpha^{2}, \beta^{2}, \alpha \beta-\beta \alpha\right) .
$$

- Radical series of indecomposable projective modules:

1	2	3	4
2	13	24	3
1	2	3	4

- Finite dimensional algebra
- Symmetric algebra ("0-Calabi-Yau")
- Indec projectives are spherical, i.e., $\operatorname{End}_{A}(P) \cong k[x] /\left(x^{2}\right)$
- Maps between projectives are easy: $i \neq j \Rightarrow \operatorname{dim}_{k} \operatorname{Hom}_{A}\left(P_{i}, P_{j}\right) \leq 1$

Zigzag algebras

- Instead of starting with (undirected) graph, start with a quiver.
- Example: Bipartite type $A_{4}: Q=1 \rightarrow 2 \leftarrow 3 \rightarrow 4$.

Let $\Lambda=k Q$. Projective (left and right) modules look like:

$$
\Lambda \Lambda=\begin{array}{cccc}
1 & 2 & 3 & 4 \\
& 13 & & 3
\end{array} ; \quad \Lambda_{\Lambda}=\begin{array}{cccc}
1 & 2 & 3 & 4 \\
2 & & 24
\end{array}
$$

So injective (left and right) modules look like:

$$
\Lambda^{*}=\begin{array}{ccc}
2 & 24 \\
1 & 2 & 3
\end{array}{ }_{4} ; \quad \Lambda^{*} \Lambda=\begin{array}{ccc}
13 & & 3 \\
2 & 3 & 4
\end{array}
$$

- Now take the trivial extension $\operatorname{Triv}(\Lambda)=\Lambda \oplus \Lambda^{*}$. Multiplication: $(a, f)(b, g)=(a b, f b+a g)$. Its projectives are:

1	2	3	4
2	1	24	3
1	2	3	4

- We've constructed Z_{4} without using generators and relations :)

Zigzag algebras

- Example: Linear type $A_{4}: Q=1 \rightarrow 2 \rightarrow 3 \rightarrow 4$. Projectives for $k Q$:

1	2	3	4
	1	2	3
		1	2
			1

- So make it smaller in stupidest way possible: $\Gamma=k Q / \operatorname{rad}^{2} k Q$.

$$
\Gamma \Gamma=\begin{array}{llll}
1 & 2 & 3 & 4 \\
& 1 & 2 & 3
\end{array} ; \quad\left\ulcorner\Gamma^{*}=\begin{array}{llll}
2 & 3 & 4 & \\
1 & 2 & 3 & 4
\end{array}\right.
$$

- Then Triv (Γ) looks like

1	2	3	4
2	13	24	3
1	2	3	4

and we've found Z_{4} again :)

- Note that $\Gamma^{\circ p}=(k Q)^{!}($quadratic dual $)$. In fact, $Z_{4}=\operatorname{Triv}\left((k Q)^{!}\right)$.

Derived categories

- Derived category $\mathrm{D}^{\mathrm{b}}(A)$ is (!) chain complexes of projective modules

$$
\cdots \xrightarrow{d} P^{(3)} \xrightarrow{d} P^{(2)} \xrightarrow{d} P^{(1)} \xrightarrow{d} P^{(0)} \xrightarrow{d} 0 \rightarrow \cdots
$$

eventually zero, $d^{2}=0$, modulo $(\cdots \rightarrow 0 \rightarrow P \xrightarrow{\text { id }} P \rightarrow 0 \rightarrow \cdots)$.

- Write Z_{s} for the type A_{s} zigzag algebra $\left(s \in \mathbb{Z}_{\geq 1}\right)$.
- For each vertex i we have a spherical twist $F_{i}: \mathrm{D}^{\mathrm{b}}\left(Z_{s}\right) \xrightarrow{\sim} \mathrm{D}^{\mathrm{b}}\left(Z_{s}\right)$:

$$
M \mapsto\left(P_{i} \otimes_{k} \operatorname{Hom}(P, M) \xrightarrow{\text { ev }} M\right) .
$$

- Example: $s=2$. The projectives are:

$$
P_{1}=\begin{aligned}
& 1 \\
& 2 \\
& 1
\end{aligned} ; \quad P_{2}=\begin{array}{r}
2 \\
1 \\
2
\end{array}
$$

So $F_{1}\left(P_{1}\right)=\left(P_{1} \otimes\langle\mathrm{id}, \alpha \beta\rangle \xrightarrow{\text { ev }} P_{1}\right) \cong\left(P_{1} \rightarrow 0\right) ; F_{1}\left(P_{2}\right)=\left(P_{1} \xrightarrow{\beta} P_{2}\right)$.

- Let $\mathrm{Br}_{s+1}=\left\langle\sigma_{1}, \ldots, \sigma_{s}\right\rangle / \sim$ denote the braid group on $s+1$ strands.
- Here, σ_{i} denotes crossing ith strand over $(i+1)$ st strand.
- Theorem [ST, RZ]: Br_{s+1} acts on $\mathrm{D}^{\mathrm{b}}\left(Z_{s}\right)$ by $s_{i} \mapsto F_{i}$.

Derived categories

- Example: $\sigma_{1} \sigma_{2} \sigma_{1} \in \mathrm{Br}_{3} \rightarrow S_{3} \ni w_{0}=s_{1} s_{2} s_{1}$ acts on $\mathrm{D}^{\mathrm{b}}\left(Z_{2}\right)$ by:

$$
\begin{aligned}
P_{1} & \stackrel{F_{1}}{\longrightarrow}\left(P_{1} \otimes\langle\mathrm{id}, \alpha \beta\rangle \xrightarrow{\text { ev }} P_{1}\right) \cong\left(P_{1} \rightarrow 0\right) \\
& \stackrel{F_{2}}{\longmapsto}\left(P_{2} \otimes\langle\beta\rangle \xrightarrow{\text { ev }} P_{1} \rightarrow 0\right) \cong\left(P_{2} \rightarrow P_{1} \rightarrow 0\right) \\
& \stackrel{F_{1}}{\longmapsto}\left(\begin{array}{cc}
P_{1} \otimes\langle\alpha\rangle \longrightarrow \\
\downarrow & P_{1} \otimes\langle\mathrm{id}, \alpha \beta\rangle \longrightarrow \\
P_{2} \longrightarrow & \downarrow \\
& \downarrow \\
& \\
&
\end{array}\right) \cong\left(P_{2} \rightarrow 0 \rightarrow 0\right)
\end{aligned}
$$

- So $w_{0}=\sigma_{1} \sigma_{2} \sigma_{1}=\sigma_{2} \sigma_{1} \sigma_{2}$ acts on $\mathrm{D}^{\mathrm{b}}\left(Z_{2}\right)$ sending P_{1} to $P_{2}[2]$.
- Compute projective resolution of the simple Z_{2}-module at vertex 1 :

$$
\begin{array}{ll}
\\
& \\
& \\
& \\
& \\
1 & 1 \rightarrow 1 \\
2
\end{array}
$$

- We see that periodicity of $Z_{2}[B B K]$ corresponds to action of $w_{0}[R Z]$.

Higher zigzag algebras

- Definition: For \wedge Koszul with gl. dim. $<\infty$, its higher zigzag algebra is $Z(\Lambda)=\operatorname{STriv}\left(\Lambda^{!}\right)$.
- STriv is a graded/"super" version of Triv which makes the theorem below work. For "type A " examples, STriv \cong Triv.
- We want a connection with type A higher preprojective algebras. Let $\Lambda=\Lambda_{s}^{d}$ be lyama's type $A d$-representation finite algebra.
- Definition: The type A_{d}^{s} higher zigzag algebra is $Z_{s}^{d}:=Z\left(\Lambda_{s}^{d}\right)$.
- \exists explicit description $Z_{s}^{d}=k Q_{s}^{d} / I_{s}^{d}$.
- Note: For $d=2$ these appear as endomorphism algebras of "hica"s [Miemietz-Turner] and for $d \geq 2, Z_{s}^{d}$ defined independently by Guo and Luo: called " d-cubic pyramid algebras".
- Theorem [G-lyama] For $s \geq 3, Z_{s}^{d} \cong \Pi\left(\Lambda_{s}^{d}\right)$.
- A morphism $\Pi^{!} \rightarrow Z$ always exists; surjectivity follows as Λ_{s}^{d} is d-hereditary; but injectivity is proved by a dimension count using type A combinatorics. It would be nice to better understand surjectivity.

Higher zigzag algebras

Examples:

- $d=1: Z_{s}^{1}=Z_{s}$. (Brauer tree algebra of line with s edges)
- $s=1: Z_{1}^{d}=k[x] /\left(x^{2}\right)$ with x in degree $d+1$.
- $s=2: Z_{2}^{d}$ is the symmetric Nakayama algebra with $d+1$ vertices and Loewy length $d+2$ (Brauer tree algebra of star with $d+1$ edges).
- $d=2$ and $s=3$:

$$
Z_{3}^{2}=k Q_{3}^{2} /\left(\alpha^{2}, \beta^{2}, \gamma^{2}, \alpha \beta-\beta \alpha, \alpha \gamma-\gamma \alpha, \beta \gamma-\gamma \beta\right)
$$

3
2
4
3

4	5	6
36	4	52
25	6	41
4	5	6

- $d=2$ and $s=4$: see intro to paper. $d=3$: tetrahedra...

Higher zigzag algebras

- Example: $d=2$ and $s=3$.

Group actions

- Again, we get spherical twist $F_{i}: \mathrm{D}^{\mathrm{b}}\left(Z_{s}^{d}\right) \xrightarrow{\sim} \mathrm{D}^{\mathrm{b}}\left(Z_{s}^{d}\right)$ at each vertex.
- $1 \Longleftarrow 2$ gives relation $F_{1} F_{2} F_{1} \cong F_{2} F_{1} F_{2}$.
$\int_{1<}^{\int_{3}^{2}}$ gives relations $\left\{\begin{array}{l}F_{1} F_{2} F_{3} F_{1} \cong F_{2} F_{3} F_{1} F_{2} \cong F_{3} F_{1} F_{2} F_{3} ; \\ F_{1} F_{2} F_{1} \cong F_{2} F_{1} F_{2}, \text { etc. }\end{array}\right.$
- $\begin{aligned} & 2 \\ & \uparrow \\ & 1<4 \\ & 1<4\end{aligned}$ gives relations

$$
\left\{\begin{array}{l}
F_{1} F_{2} F_{3} F_{4} F_{1} \cong F_{2} F_{3} F_{4} F_{1} F_{2} \cong F_{3} F_{4} F_{1} F_{2} F_{3} \cong F_{4} F_{1} F_{2} F_{3} F_{4} \\
F_{1} F_{2} F_{3} F_{1} \cong F_{2} F_{3} F_{1} F_{2}, \text { etc. } \\
F_{1} F_{2} F_{1} \cong F_{2} F_{1} F_{2}, \text { etc. }
\end{array}\right.
$$

- We get large group $G_{s}^{d}=\left\langle\sigma_{i}\right\rangle / \sim$ acting on $\mathrm{D}^{\mathrm{b}}\left(Z_{s}^{d}\right)$ by $\sigma_{i} \mapsto F_{i}$.

Group actions

- G_{s}^{d} has element w_{0} playing role of "lift of longest element"
- w_{0} is built from "Coxeter elements" adapted to our quivers
- Example: $\ln G_{3}^{2}$,

$$
w_{0}=\underbrace{\sigma_{5}}_{c_{1}^{r r}} \underbrace{\sigma_{6} \sigma_{4} \sigma_{5}}_{c_{2}^{r}} \underbrace{\sigma_{1} \sigma_{2} \sigma_{3} \sigma_{6} \sigma_{4} \sigma_{5}}_{c_{3}^{r}}
$$

- Do these categorical group actions occur "in nature"?
- [Seidel-Thomas] Simplest geometric example of braid group action:
- take cyclic subgroup $G<S L_{2}(\mathbb{C})$ acting on affine 2 -space;
- consider equivariant sheaves built from skyscraper sheaf of fixed point;
- they are spherical objects in $D_{G}^{b}\left(\operatorname{coh} \mathbb{A}^{2}\right)$ and their spherical twists satisfy braid relations.
- Thm: Similarly, G_{s}^{d} acts on $\mathrm{D}_{\mathrm{G}}^{\mathrm{b}}\left(\operatorname{coh} \mathbb{A}^{d+1}\right)$ for abelian $G<S L_{d+1}(\mathbb{C})$.

Thanks for listening!

