Joseph Grant University of East Anglia, Norwich, UK http://josephgrant.eu

> ICRA 2018 Prague, Czech Republic Thursday 16th August

Motivation

- Aim: construct interesting periodic algebras
- Why? they are connected to symmetries of derived categories
- Hope: to get interesting relations between spherical twists

(Now) classical theory: braid group actions on triangulated categories

- Simplest example: various incarnations
 - ▶ (*A_s*)-configurations
 - Brauer tree algebras of lines
 - type A zigzag algebras
 - Ext-algebras of equivariant skyscraper sheaves
- Why are they periodic?
 - almost Koszul dual to type A preprojective algebras
 - type A preprojective algebras are periodic
 - (one) reason: nice AR theory of finite type hereditary algebras

• Bite: higher AR theory and higher preprojective algebras [Iyama, ...]

Zigzag algebras

- Fix a nice field k = 𝔅 = 𝔅. Given a simple graph (no multiple edges) we construct its zigzag algebra.
- **Example:** given A_4 graph 1 2 3 4 we get $Z_4 = kQ/I$ where

$$Q = 1 \underbrace{\overset{\alpha}{\underset{\beta}{\longrightarrow}}}_{\beta} 2 \underbrace{\overset{\alpha}{\underset{\beta}{\longrightarrow}}}_{\beta} 3 \underbrace{\overset{\alpha}{\underset{\beta}{\longrightarrow}}}_{\beta} 4 , \quad I = (\alpha^2, \beta^2, \alpha\beta - \beta\alpha).$$

• Radical series of indecomposable projective modules:

1	2	3	4
2	1 3	24	3
1	2	3	4

- Finite dimensional algebra
- Symmetric algebra ("0-Calabi-Yau")
- Indec projectives are spherical, i.e., End_A(P) ≅ k[x]/(x²)
- ▶ Maps between projectives are easy: $i \neq j \Rightarrow \dim_k \operatorname{Hom}_A(P_i, P_j) \le 1$

Zigzag algebras

- Instead of starting with (undirected) graph, start with a quiver.
- Example: Bipartite type A₄: Q = 1 → 2 ← 3 → 4. Let Λ = kQ. Projective (left and right) modules look like:

So injective (left and right) modules look like:

$$_{\Lambda}\Lambda^{*} = {\begin{array}{*{20}c} 2 & 2 & 4 \\ 1 & 2 & 3 & 4 \end{array}}; \quad \Lambda^{*}{}_{\Lambda} = {\begin{array}{*{20}c} 1 & 3 & 3 \\ 1 & 2 & 3 & 4 \end{array}}$$

Now take the trivial extension Triv(Λ) = Λ ⊕ Λ*.
 Multiplication: (a, f)(b, g) = (ab, fb + ag). Its projectives are:

1	2	3	4
2	1 3	24	3
1	2	3	4

• We've constructed Z₄ without using generators and relations :)

Zigzag algebras

- **Example:** Linear type A_4 : $Q = 1 \rightarrow 2 \rightarrow 3 \rightarrow 4$. Projectives for kQ:
- 1
 2
 3

 1
 2
 3

 This won't work:
 1
 2

 Loewy length is too big!
 1
- So make it smaller in stupidest way possible: $\Gamma = kQ/\operatorname{rad}^2 kQ$.

Then Triv(Γ) looks like

and we've found Z_4 again :)

• Note that $\Gamma^{op} = (kQ)^{!}$ (quadratic dual). In fact, $Z_4 = \text{Triv}((kQ)^{!})$.

Derived categories

• Derived category $D^{b}(A)$ is (!) chain complexes of projective modules $\dots \xrightarrow{d} P^{(3)} \xrightarrow{d} P^{(2)} \xrightarrow{d} P^{(1)} \xrightarrow{d} P^{(0)} \xrightarrow{d} 0 \to \dots$

eventually zero, $d^2 = 0$, modulo $(\dots \to 0 \to P \xrightarrow{id} P \to 0 \to \dots)$.

- Write Z_s for the type A_s zigzag algebra $(s \in \mathbb{Z}_{\geq 1})$.
- For each vertex *i* we have a spherical twist $F_i : D^b(Z_s) \xrightarrow{\sim} D^b(Z_s)$:

 $M \mapsto (P_i \otimes_k \operatorname{Hom}(P, M) \stackrel{\operatorname{ev}}{\to} M).$

• **Example:** s = 2. The projectives are:

$$P_1 = \begin{array}{c} 1 \\ 2 \\ 1 \end{array}; \qquad P_2 = \begin{array}{c} 2 \\ 1 \\ 2 \end{array}$$

So $F_1(P_1) = (P_1 \otimes \langle \mathsf{id}, \alpha \beta \rangle \xrightarrow{e_V} P_1) \cong (P_1 \to 0); F_1(P_2) = (P_1 \xrightarrow{\beta} P_2).$

• Let $\mathsf{Br}_{s+1} = \langle \sigma_1, \dots, \sigma_s \rangle / \sim$ denote the braid group on s+1 strands.

- Here, σ_i denotes crossing *i*th strand over (i + 1)st strand.
- **Theorem** [ST, RZ]: Br_{s+1} acts on $D^b(Z_s)$ by $s_i \mapsto F_i$.

Derived categories

• Example: $\sigma_1 \sigma_2 \sigma_1 \in Br_3 \twoheadrightarrow S_3 \ni w_0 = s_1 s_2 s_1$ acts on $D^b(Z_2)$ by:

$$P_{1} \xrightarrow{F_{1}} (P_{1} \otimes \langle \mathrm{id}, \alpha\beta \rangle \xrightarrow{\mathrm{ev}} P_{1}) \cong (P_{1} \to 0)$$

$$\xrightarrow{F_{2}} (P_{2} \otimes \langle\beta \rangle \xrightarrow{\mathrm{ev}} P_{1} \to 0) \cong (P_{2} \to P_{1} \to 0)$$

$$\xrightarrow{F_{1}} \begin{pmatrix} P_{1} \otimes \langle\alpha \rangle \longrightarrow P_{1} \otimes \langle \mathrm{id}, \alpha\beta \rangle \longrightarrow 0 \\ \downarrow & \downarrow & \downarrow \\ P_{2} \longrightarrow P_{1} \longrightarrow 0 \end{pmatrix} \cong (P_{2} \to 0 \to 0)$$

• So $w_0 = \sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2$ acts on $D^b(Z_2)$ sending P_1 to $P_2[2]$.

2

• Compute projective resolution of the simple Z₂-module at vertex 1:

• We see that periodicity of Z_2 [BBK] corresponds to action of w_0 [RZ].

- Definition: For Λ Koszul with gl. dim. < ∞, its higher zigzag algebra is Z(Λ) = STriv(Λ[!]).
- STriv is a graded/"super" version of Triv which makes the theorem below work. For "type A" examples, STriv ≅ Triv.
- We want a connection with type A higher preprojective algebras. Let $\Lambda = \Lambda_s^d$ be lyama's type A d-representation finite algebra.
- **Definition:** The type A_d^s higher zigzag algebra is $Z_s^d := Z(\Lambda_s^d)$.
- \exists explicit description $Z_s^d = kQ_s^d/I_s^d$.
- Note: For d = 2 these appear as endomorphism algebras of "hica"s [Miemietz-Turner] and for $d \ge 2$, Z_s^d defined independently by Guo and Luo: called "*d*-cubic pyramid algebras".
- Theorem [G-Iyama] For $s \ge 3$, $Z_s^d \cong \Pi(\Lambda_s^d)^!$.
- A morphism $\Pi^! \to Z$ always exists; surjectivity follows as Λ_s^d is *d*-hereditary; but injectivity is proved by a dimension count using type *A* combinatorics. It would be nice to better understand surjectivity.

Examples:

• d = 1: $Z_s^1 = Z_s$. (Brauer tree algebra of line with s edges)

•
$$s = 1$$
: $Z_1^d = k[x]/(x^2)$ with x in degree $d + 1$.

• s = 2: Z_2^d is the symmetric Nakayama algebra with d + 1 vertices and Loewy length d + 2 (Brauer tree algebra of star with d + 1 edges).

$$Z_3^2 = kQ_3^2/(\alpha^2, \beta^2, \gamma^2, \alpha\beta - \beta\alpha, \alpha\gamma - \gamma\alpha, \beta\gamma - \gamma\beta)$$

• d = 2 and s = 4: see intro to paper. d = 3: tetrahedra...

• **Example:** d = 2 and s = 3.

• Compute projective resolutions of simples:

• Again, we have some periodicity.

Group actions

• Again, we get spherical twist $F_i : D^b(Z^d_s) \xrightarrow{\sim} D^b(Z^d_s)$ at each vertex.

• 1 2 gives relation
$$F_1F_2F_1 \cong F_2F_1F_2$$
.
• 2
• 3 gives relations
$$\begin{cases} F_1F_2F_3F_1 \cong F_2F_3F_1F_2 \cong F_3F_1F_2F_3; \\ F_1F_2F_1 \cong F_2F_1F_2, \text{ etc.} \end{cases}$$
• 1 4 gives relations 1 4 4

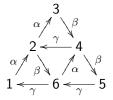
 $\begin{cases} F_1F_2F_3F_4F_1 \cong F_2F_3F_4F_1F_2 \cong F_3F_4F_1F_2F_3 \cong F_4F_1F_2F_3F_4; \\ F_1F_2F_3F_1 \cong F_2F_3F_1F_2, \text{ etc.}; \\ F_1F_2F_1 \cong F_2F_1F_2, \text{ etc.} \end{cases}$

• We get large group $G_s^d = \langle \sigma_i \rangle / \sim \text{acting on } D^b(Z_s^d)$ by $\sigma_i \mapsto F_i$.

Group actions

- G_s^d has element w_0 playing role of "lift of longest element"
- w_0 is built from "Coxeter elements" adapted to our quivers
- Example: In G_3^2 ,

$$w_0 = \underbrace{\sigma_5}_{c_1^{rr}} \underbrace{\sigma_6 \sigma_4 \sigma_5}_{c_2^r} \underbrace{\sigma_1 \sigma_2 \sigma_3 \sigma_6 \sigma_4 \sigma_5}_{c_3^r}$$



- Do these categorical group actions occur "in nature"?
- [Seidel-Thomas] Simplest geometric example of braid group action:
 - ▶ take cyclic subgroup G < SL₂(C) acting on affine 2-space;
 - consider equivariant sheaves built from skyscraper sheaf of fixed point;
 - ► they are spherical objects in D^b_G(coh A²) and their spherical twists satisfy braid relations.
- Thm: Similarly, G_s^d acts on $D_G^b(\operatorname{coh} \mathbb{A}^{d+1})$ for abelian $G < SL_{d+1}(\mathbb{C})$.

Thanks for listening!